这是一个用于测试 MathJax 数学公式渲染的页面,包含各种常见的 LaTeX 语法示例。

行内公式

这是行内公式示例:$E = mc^2$,爱因斯坦的质能方程。

圆的面积公式:$A = \pi r^2$

勾股定理:$a^2 + b^2 = c^2$

独立公式块

1. 基础数学公式

二次方程求根公式: $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

欧拉公式(最美的数学公式): $$e^{i\pi} + 1 = 0$$

2. 求和与积分

求和符号: $$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

定积分: $$\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

双重积分: $$\iint_D f(x,y) , dx , dy$$

3. 矩阵

2x2 矩阵: $$\begin{pmatrix} a & b \ c & d \end{pmatrix}$$

3x3 单位矩阵: $$I = \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

行列式: $$\begin{vmatrix} a & b \ c & d \end{vmatrix} = ad - bc$$

4. 方程组

线性方程组: $$\begin{cases} x + y = 5 \ 2x - y = 1 \end{cases}$$

5. 微积分

导数定义: $$f’(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

偏导数: $$\frac{\partial f}{\partial x}, \quad \frac{\partial^2 f}{\partial x \partial y}$$

6. 希腊字母

常用希腊字母:$\alpha, \beta, \gamma, \delta, \epsilon, \theta, \lambda, \mu, \pi, \sigma, \omega$

大写希腊字母:$\Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega$

7. 运算符和符号

不等式:$a \leq b$,$c \geq d$,$e \neq f$

约等于:$\pi \approx 3.14159$

属于:$x \in \mathbb{R}$,$A \subset B$

无穷:$\infty$,$\lim_{x \to \infty}$

8. 分数和根式

分数:$\frac{1}{2}$,$\frac{a+b}{c+d}$

根式:$\sqrt{2}$,$\sqrt[3]{8}$,$\sqrt{x^2 + y^2}$

9. 上下标

上标:$x^2$,$e^{x+y}$,$2^{2^{2^2}}$

下标:$x_1$,$a_{i,j}$,$x_{n-1}$

10. 向量和范数

向量:$\vec{v}$,$\overrightarrow{AB}$

点积:$\vec{a} \cdot \vec{b}$

叉积:$\vec{a} \times \vec{b}$

范数:$|\vec{x}|$,$|A|_2$

11. 概率统计

期望:$E[X] = \mu$

方差:$\text{Var}(X) = \sigma^2$

正态分布: $$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

条件概率:$P(A|B) = \frac{P(A \cap B)}{P(B)}$

12. 数列与极限

数列极限: $$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

级数收敛: $$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

13. 逻辑符号

逻辑与:$\land$,逻辑或:$\lor$

全称量词:$\forall$,存在量词:$\exists$

蕴含:$\Rightarrow$,等价:$\Leftrightarrow$

14. 集合论

并集:$A \cup B$

交集:$A \cap B$

差集:$A \setminus B$

空集:$\emptyset$

15. 复杂公式示例

泰勒级数展开: $$f(x) = f(a) + f’(a)(x-a) + \frac{f’’(a)}{2!}(x-a)^2 + \frac{f’’’(a)}{3!}(x-a)^3 + \cdots$$

傅里叶变换: $$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

麦克斯韦方程组: $$\begin{align} \nabla \cdot \vec{E} &= \frac{\rho}{\epsilon_0} \ \nabla \cdot \vec{B} &= 0 \ \nabla \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \ \nabla \times \vec{B} &= \mu_0\vec{J} + \mu_0\epsilon_0\frac{\partial \vec{E}}{\partial t} \end{align}$$

16. 多行公式对齐

使用 align 环境: $$\begin{align} x &= a + b + c \ &= d + e \ &= f + g \end{align}$$

17. 分段函数

绝对值函数: $$|x| = \begin{cases} x, & \text{if } x \geq 0 \ -x, & \text{if } x < 0 \end{cases}$$

18. 组合数学

组合数:$\binom{n}{k} = \frac{n!}{k!(n-k)!}$

排列数:$P(n,k) = \frac{n!}{(n-k)!}$

19. 三角函数

基本三角恒等式: $$\sin^2\theta + \cos^2\theta = 1$$

和角公式: $$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

20. 线性代数

特征值方程: $$A\vec{v} = \lambda\vec{v}$$

矩阵乘法: $$AB_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj}$$


测试完毕

如果以上所有公式都能正常显示,说明 MathJax 配置成功!🎉